Search results for "quantum field theory on curved space"
showing 4 items of 4 documents
Primordial dark matter from curvature induced symmetry breaking
2020
We demonstrate that adiabatic dark matter can be generated by gravity induced symmetry breaking during inflation. We study a $Z_2$ symmetric scalar singlet that couples to other fields only through gravity and for which the symmetry is broken by the spacetime curvature during inflation when the non-minimal coupling $\xi$ is negative. We find that the symmetry breaking leads to the formation of adiabatic dark matter with the observed abundance for the singlet mass $m\sim{\rm MeV}$ and $|\xi|\sim 1$.
Despicable dark relics: generated by gravity with unconstrained masses
2019
We demonstrate the existence of a generic, efficient and purely gravitational channel producing a significant abundance of dark relics during reheating after the end of inflation. The mechanism is present for any inert scalar with the non-minimal curvature coupling $\xi R\chi^2$ and the relic production is efficient for natural values $\xi = {\cal O}(1)$. The observed dark matter abundance can be reached for a broad range of relic masses extending from $m \sim 1 {\rm k eV}$ to $m \sim 10^{8} {\rm GeV}$, depending on the scale of inflation and the dark sector couplings. Frustratingly, such relics escape direct, indirect and collider searches since no non-gravitational couplings to visible ma…
Semiclassical geons as solitonic black hole remnants
2013
We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We als…
Renormalisation group improvement in the stochastic formalism
2019
We investigate compatibility between the stochastic infrared (IR) resummation of light test fields on inflationary spacetimes and renormalisation group running of the ultra-violet (UV) physics. Using the Wilsonian approach, we derive improved stochastic Langevin and Fokker-Planck equations which consistently include the renormalisation group effects. With the exception of stationary solutions, these differ from the naive approach of simply replacing the classical potential in the standard stochastic equations with the renormalisation group improved potential. Using this new formalism, we exemplify the IR dynamics with the Yukawa theory during inflation, illustrating the differences between …